
1

White Paper

Future-Proof Software Architecture
with Kithara RealTime Suite

The Pulse of Real-Time

Going forward with Dedicated Mode and KiK64

Kithara RealTime Suite is a real-time extension for Windows operating sys-
tems. It is a modular software that, from an outside perspective, has only
gone through a small amount of changes during its more than 20 years of
existence. Whenever internal adjustments had to be made due to external
developments of the underlying operating systems or hardware platforms,
major changes for the user were generally avoided. This is an important
factor, as the compatibility with earlier versions of the software has always
been a high priority.

As a consequence, several alternative approaches to different issues were
supported and therefore the variety of solutions increased continuously.
Among them, Kithara RealTime Suite over the years, had to make distinctions
regarding hardware, operating system, bit size of the different program parts,
interrupt handling context as well as mode of real-time execution. Due to the
increasing number of alternatives, users were frequently confronted with the
question, which approach would be the most suitable going forward. This is
why, in the following article, we want to describe several specific mechanisms
that are crucial for the future in order to eliminate uncertainties and present
the optimal course of action to developers.

2

The Pulse of Real-Time

Some of the previously available alternatives could not be supported any-
more since it was not feasible for our software to consider severely outdated
PC hardware without impeding technological advances at the same time.
With the release of the security updates for the hardware bugs “Meltdown”
and “Spectre” by Intel and Microsoft, some of the remaining solutions be-
came restricted as well.

The following table shows what will be available for Kithara RealTime
Suite starting with Version 10.05:

Alternative Before Now

Windows 7 or Windows 10? both both

Operating system: 32-bit or 64-bit? both both

Application: 32-bit or 64-bit? both both

Native or mixed size? both both

Windows interrupts or real-time interrupts? both real-time interrupts only
(Exception: Interrupt Module)

Instruction-based relocation or kernel DLL? both via kernel DLL only

Shared real-time or dedicated real-time? both Dedicated real-time only

Standard PC or APIC available? both APIC has to be available

Single-core PC or multi-core PC? both multi-core PC

Apart from the required hardware equipment (multi-core PCs with APIC
have been standard for years), the following will focus on the other restric-
tions. Windows 10 in general as well as all systems that had the security up-
dates for counteracting the issues with “Meltdown” and “Spectre” installed,
both have made shared real-time impossible. This means that, going for-
ward, the procedure of running real-time tasks as well as Windows on the
same CPU core will cease to function. The reason for this is the rigorous re-
duction and monitoring of the page-table-addressed system memory range
which prevents the usage of real-time interrupts on CPUs that are operated
by Windows.

This change has the consequence that running the dedicated real-time
mode, meaning the utilization of logical CPUs exclusively for the real-time
system, becomes mandatory. Excluding single CPUs can be done with the
Windows tool “msconfig.exe”. In that case, the designated CPU will only boot
the Kithara real-time system. What are “logical CPUs”? The term is supposed
to lead away from definitions such as “cores” or “hyperthreads” and instead
describe any kind of procedure that implements parallel instruction execu-
tion. Please see the following website on how to set up dedicated real-time
mode for the Kithara real-time system (registration/login required):
> http://kithara.com/en/docs/krts:tutorial:setupdedicated

http://kithara.com/en/docs/krts:tutorial:setupdedicated

3

White Paper: Future-proof Software Architecture with Kithara RealTime Suite

Here are the most important benefits for using dedicated real-time:
	� Disabling of interrupts (CLI/STI) by external code is prevented
	� Long instruction delays (e. g. WBINVD) by external code are prevented
	� CPU cannot enter deep sleep states anymore (due to deactivation of C1E)
	� No forced cyclical control release to Windows (allows for permanent use
of CPU)
	� Significantly higher interrupt frequencies achievable
	� Significantly faster interrupt reaction as well as shorter task switching
	� Proprietary system environment allows for optimized processes
	� Optimization of interrupt concept
	� Flexible hyperthreading application for every individual core
	� Strong memory protection against accesses by external programs

In short: Real-time properties and safety mechanisms are significantly
improved.

Essential components of a real-time application

For further consideration of the software architecture, the four major com-
ponents that are involved in the execution of a real-time application need
to be outlined:

Component Type Description

 Real-time kernel by Kithara SYS One-time installation as generic Windows driver

 Interface driver by Kithara DLL Provides user with access to the real-time kernel

 Windows application EXE Windows program of the user

 Kernel DLL DLL Real-time code of the user, loaded into real-time context

 The real-time kernel is a crucial program part of the real-time system.
It specifies the organization of accessed resources, registering of handlers
for the different events and also includes the implementation of almost all
function modules.

In the course of the so-called runtime installation, the real-time system
is installed like a device driver, in this case of a generic kind, and which sup-
ports a variety of specific hardware devices. However, it remains completely
passive in the background until the first application establishes access to the
real-time kernel.

 The interface driver is a DLL that provides access to the real-time kernel
via exported API functions. Header files and import libraries for the different
programming languages and development environments that are employed
by the user are available.

4

The Pulse of Real-Time

 The user’s Windows application, in principle, can be generated in any pro-
gramming language that is able to execute exported API functions from a DLL. Via
the interface driver, the application provides access to the real-time kernel, sub-
sequently generates a shared memory block for the shared management of nec-
essary resources and loads one or multiple kernel DLLs into the real-time context.

 The kernel DLL, in turn, is loaded into the real-time context by the Win-
dows application. It is responsible for the actual distribution of necessary
resources (such as additional shared memory, events, pipes, sockets or re-
al-time tasks). Furthermore, it contains the time-critical or hardware-depen-
dent program code of the application. The Kernel DLL has access to all re-
al-time functions of Kithara RealTime Suite. It needs to be created with a
programming language that allows for the generation of native machine
code such as C/C++ or Delphi.

Basic differences between systems

The real-time extension Kithara RealTime Suite supports Windows 7 and
Windows 10, each in both the 32-bit version as well as the 64-bit version of
the operating systems. Regarding 64-bit Windows systems, it is further dif-
ferentiated whether the Windows application exists as 32-bit version or 64-
bit version. The differences between Windows 7 and Windows 10 are not
relevant to this specific matter and can be safely ignored. This basically leads
to three different variants.

While the first two variants seem plausible, since all components that are
involved have the same bit size (32-bit or 64-bit), the third variant presents a
special case, to which we will go into detail at a later point.

Programming languages and models

Kithara RealTime Suite users create a Windows application as user mode ap-
plications program and move the time-sensitive and hardware-dependent
code parts into a DLL, which is then loaded into the real-time context by the
driver. The following table shows how Windows application and kernel DLL
respectively are able to gain access to functions of the real-time driver.

Windows
Operating System

Real-Time Kernel
by Kithara

Kernel DLL Windows Application Explanation

 32-bit SYS: 32-bit DLL: 32-bit EXE: 32-bit native

 64-bit SYS: 64-bit DLL: 64-bit EXE: 64-bit native

 64-bit SYS: 64-bit DLL: 64-bit EXE: 32-bit Mixed-Size: KiK64

5

White Paper: Future-proof Software Architecture with Kithara RealTime Suite

Programming Language/Model Windows Application Kernel DLL

C functions  

Delphi functions  

C# or other .NET languages
(no native machine code)  —

C/C++ as well as Delphi can load the interface driver either statically via an
import library or, if required, integrate it dynamically. The Kithara interface
driver provides access to real-time functionalities via C API functions, which
is a common standard used with Windows operating systems to establish
access from different programming languages and applications. All C func-
tions return a value which either signifies the result or the error cause. The
error code should generally be evaluated as it often leads to the source of
the error.

Error handling in C (example):

General approach

The user generally creates two components, the Windows application and
the kernel DLL. However, since both are executed in different contexts (Win-
dows context and real-time context), the question then arises how these
two parts are able to exchange information with each other. There are in-
direct methods such as pipes or sockets but also shared memory for direct
data exchange, which is a special memory range, that both sides have si-
multaneous access to.

The following example shows this procedure. It will describe how to set
up a real-time timer with which to record measurement data in real-time
and how to enable transmission to the Windows application via a data pipe.

Data exchange between Windows application and kernel DLL
For the flexible and type-safe composing of shared memory, we recom-
mend defining a data structure (struct in C/C++ or record in Delphi) which
includes all individual variables. In variants 1 and 2 in the table on page 4,
meaning cases where all involved components possess the same bit size,

const char* pCustomerNumber = "012345"; // Customer number at Kithara
if (KSError error = KS_openDriver(pCustomerNumber)) {
 // error handling, such as:
 outputErr(error, "KS_openDriver", "Unable to open the driver!");
 KS_closeDriver();
 return;
}

6

The Pulse of Real-Time

type safety is ensured automatically. It is only variant 3 that requires special
attention, which we will cover at a later point.

Defining a structure for data exchange between Windows application and
kernel DLL:

What happens in the Windows application?
The following code excerpts (in C/C++) explain how the Windows application
generates different resources and how the kernel DLL is loaded.

Only after successfully opening the real-time driver, further functions are
available:

Creating a shared memory range for data exchange:

Determining the address of the shared memory range in the Windows context:

struct SharedData {
 // contains handles for data exchange between Windows application and
 // kernel DLL such as objects for events, pipes, tasks, network ports etc.

 KSHandle hKernel;
 KSHandle hEvent;
 KSHandle hPipe;
 KSHandle hCallBack;
 KSHandle hTask;
 KSHandle hTimer;
};

const char* pCustomerNumber = "012345"; // Customer number at Kithara
if (KSError error = KS_openDriver(pCustomerNumber))
 ...

KSHandle hData;
if (KSError error = KS_createSharedMemEx(&hData, "SharedMemName",
 sizeof(SharedData), 0))
 ...

SharedData* pApp;
if (KSError error = KS_getSharedMemEx(hData, (void**) &pApp, 0))
 ...

7

White Paper: Future-proof Software Architecture with Kithara RealTime Suite

Loading a kernel DLL into the real-time context:

Executing the initialization function _initFunc within the kernel DLL; it
needs to receive the handle to the shared memory range:

What happens in the kernel DLL?
First, the executed initialization function _initFunc in the kernel DLL also
needs to determine the valid address for the common shared memory range
of the real-time context (pSys). This should be stored as a global variable in
the kernel DLL.

Prototype of the initialization function _initFunc:

Determining the address of the shared memory range in real-time context
within the _initFunc of the kernel DLL:

Subsequently, all required resources are generated and the respective
handles are stored in the common data structure.

Generating different resources (data pipe for the transmission of measure
ment data, event object for messaging the Windows application):

if (KSError error = KS_loadKernel(&pApp->hKernel, "C:\\MyKernel.dll", NULL,
 NULL, 0))
 ...

if (KSError error = KS_execKernelFunctionEx(pApp->hKernel, "_initFunc",
 hSharedMemory, KS_INVALID_HANDLE, 0))
 ...

extern "C"
KSError __declspec(dllexport) __stdcall _initFunc(void* pArgs, void* pContext) {
KSHandle hData = *(KSHandle*) pArgs;
 ...

SharedData* pSys = (SharedData*)pArgs;
if (KSError error = KS_getSharedMemEx(hData, (void**) &pSys, 0))
 ...

if (KSError error = KS_createEvent(&pSys->hEvent, "EventName", 0))
 ...
if (KSError error = KS_createPipe(&pSys->hPipe, "PipeName",
 sizeof(MeasurementData), 100, NULL, 0))
 ...

8

The Pulse of Real-Time

Generating a callback object from the exported function _timerCallBack of
the kernel DLL for creating a real-time task with priority 200 and starting the
task as real-time timer with a frequency of 10 kHz:

What does the real-time timer task do within the kernel DLL?
The real-time task will be signaled after every sequence of the timer period,
here meaning with a frequency of 10 kHz.

Callback function for the real-time task _timerCallBack:

Writing measurement data into a data pipe and setting an event for noti-
fying the Windows application of the presence of measurement data:

Exiting the real-time task function (every return value unequal to 0 leads
to cancellation):

if (KSError error = KS_createKernelCallBack(&pSys->hCallBack, pSys->hKernel,
 "_timerCallBack", NULL, KSF_DIRECT_EXEC, 0))
 ...
if (KSError error = KS_createTask(&pSys->hTask, pSys->hCallBack, 200, 0))
 ...
if (KSError error = KS_createTimer(&pSys->hTimer, 100*us, pSys->hTask,
 KSF_REALTIME_EXEC))
 ...

extern "C"
KSError __declspec(dllexport) __stdcall _timerCallBack(void* pArgs,
 void* pContext) {
 SharedData* pData = (SharedData*) pArgs;
 TimerUserContext* pUserContext = (TimerUserContext*) pContext;
 ...

MeasurementData data;
... // fill 'data' with measurement data
if (KSError error = KS_putPipe(pSys->hPipe, &data, 1, NULL, 0))
 ...
if (KSError error = KS_setEvent(pSys->hEvent))
 ...

..
 return KS_OK;
}

9

White Paper: Future-proof Software Architecture with Kithara RealTime Suite

How does the Windows application receive the measurement data?
A Windows thread generated for the reception of measurement data is
blocked by having the thread wait for the setting of the event object. After
the event is set, the thread fetches the now arrived measurement data from
the pipe and is then able to process, save or graphically visualize it:

Blocking a Windows thread by waiting for the event object:

Reading measurement data from a data pipe:

Summary
As shown, both components (Windows application as well as kernel DLL) are
able to access the common memory range in order to exchange information.

In case it becomes necessary to use significantly larger memory blocks
that are beyond this general method of data exchange, these can be gener-
ated appropriately in shared memory, whereas the handle is written into the
already existing central structure of the type SharedData.

Special approach with KiK64

Until now, we only looked at the normal case, where all four components,
meaning Windows operating system, real-time kernel by Kithara, Windows
application as well as kernel DLL, are present with the same bit size, uni-
formly in 32-bit or 64-bit (variants 1 and 2 of the table on page 4). This pos-
es a problem for many users when both 32-bit as well as 64-bit destination
systems need to be supported, however, providing two Windows applica-
tions would also turn out to be too expensive or too complicated. As an ex-
ample, for historical reasons, an application component, for which no 64-bit
version exists, might be indispensable.

The seemingly obvious solution of having a single 32-bit Windows appli-
cation support even 64-bit Windows systems, however, requires special at-
tention. Whereas 32-bit versions of regular application programs are gener-
ally supported on 64-bit Windows, this is usually not possible at kernel level
(in real-time context). The solution for this issue is the new KiK64 method.
The following will detail this special function.

if (KSError error = KS_waitForEvent(pApp->hEvent, 0, 0))
 ...

MeasurementData data;
if (KSError error = KS_getPipe(pApp->hPipe, &data, 1, NULL, 0))
 ...
... // evaluate measurement data in 'data'

10

The Pulse of Real-Time

Even though KiK64 (Kithara-32-in-Kithara-64) still has the same name as
previous versions, its new implementation, however, is completely different.
Before, due to continuous address conversions, this feature was bought dearly
with heavy performance loss and other limitations. The new approach, on the
other hand, presents a flexible solution with full CPU performance and opti-
mal real-time behavior. The solution is to provide the kernel DLL natively for
the respective Windows versions in both 32-bit as well as 64-bit (variant 3 of
the table). Due to the inherently required limitation to real-time code, this can
usually be implemented without any problems. This means that, depending
on the present Windows installation, the 32-bit Windows application loads a
32-bit or a 64-bit kernel DLL into the real-time context.

Determining the bit size of an operating system:

In this particular case, if a 32-bit Windows installation is present, all other
components of the 32-bit version are applied as well. The Windows applica-
tion loads the 32-bit kernel DLL in a “native” mode, as described above.

In case a 64-bit Windows installation is present (as well as the real-time
kernel by Kithara as 64-bit version), the Windows application loads the 64-
bit kernel DLL into the real-time context. Special attention needs to be de-
voted to the outlining of data structures, which are created for shared mem-
ory. The reason is, at this point, that the Windows application has a “32-bit
view” on the shared memory range, while the kernel DLL has a “64-bit view”
on it. This is of utmost importance, as it needs to be ensured that both sides
refer to an identical memory image, meaning the same bit size of variables
within the shared data structures. How is this achieved?

Provided that only handles of the Kithara real-time environment or vari-
ables of simple data types are used, 32-bit and 64-bit views are identical, since
all handles generally have the same size of 32 bit. However, the moment ad-
dress pointers are also defined in data structures, the viewpoint of both sides
would become different.

Due to the fact address pointers are only valid either in the Windows
application or in the kernel DLL, this should generally be avoided. If an ad-
ditional memory block for data exchange becomes necessary, another han-
dle in turn has to be saved in shared memory. The following code excerpts
show this.

KSSystemInformation info;
info.structSize = sizeof(KSSystemInformation);

if (KSError error = KS_getSystemInformation(&info, 0))
 ...
if (info.isSys64Bit)
 ... // 64-bit Windows system: load 64-bit kernel DLL
else
 ... // 32-bit Windows system: load 32-bit kernel DLL

11

White Paper: Future-proof Software Architecture with Kithara RealTime Suite

False: Defining a structure for data exchange, which has to include an ad-
dress pointer, that is created by KS_createSharedMem:

Defining a structure this way would be faulty. At the point where the
application registers the socket handle hSocket, the kernel DLL will “think”
that there is the pipe handle hPipe. Additionally, the Windows applica-
tion would not be able to request a 64-bit-conform address pointer with
KS_createSharedMem for the creation of shared memory to save it to the
data structure since it would only receive the lower 32-bit part of it.

Correct: Defining a structure for data exchange that receives a handle on
another shared memory block, created with KS_createSharedMemEx:

Retrieving the correct memory address within the respective context en-
vironment:

struct SharedData {
 Handle hEvent;
 byte* pBigBuffer; // <== 32-bit? 64-bit?
 Handle hPipe;
 Handle hSocket;
};

struct SharedData {
 Handle hEvent;
 Handle hBigBuffer;
 Handle hPipe;
 Handle hSocket;
};

BigBufferData* pBigBuffer;
if (KSError error = KS_getSharedMemEx(pSys->hBigBuffer, (void**) &pBigBuffer, 0))
 ...
pBigBuffer->...

Imprint
Kithara Software GmbH, Alte Jakobstr. 78, 10179 Berlin, Germany, Phone: +49 30 2789673-0, Fax: +49 30 2789673-20
Email: info@kithara.com (general inquiries), support@kithara.com (technical inquiries), Internet: www.kithara.com
Copyright © 2019 Kithara Software GmbH. All rights reserved. No liability for printing errors. Subject to alterations.
Copying or reproducing, in whole or in part, is permitted only with approval of Kithara.
All named trademarks or registered trademarks are the properties of their respective owners. December, 2019

While this approach is generally correct, for efficiency concerns, it should
only be done once at the start of program execution (in _initFunc). Rather, it
would be preferable to save the retrieved address pointer for later access. To
conclude, here is a check list for real-time applications on 32-bit and 64-bit
Windows systems:
1.	Relocation of time-sensitive and hardware-dependent real-time code

into a DLL project
2.	Compilation of the DLL project as 32-bit DLL as well as 64-bit DLL
3.	Setting up dedicated real-time mode on a system for one or more CPUs
4.	Creation of shared memory with the function KS_createSharedMemEx
5.	Determining specifically whether a 32-bit system or a 64-bit system

is at hand
6.	Loading of the appropriate DLL with the function KS_loadKernel
7.	 Creation of callback objects with the function KS_createKernelCallBack
8.	Saving all resources that need to be accessed simultaneously, preferably

as handles
9.	Saving all potentially required address pointers locally

Conclusion

The excellent real-time capabilities of the Kithara environment, which, in
case of native execution of real-time code, have existed for years, are now
also available even for customers who had to avoid porting their Windows
application into the 64-bit world. Going forward, this flexible and easily ap-
plicable support for both 32-bit as well as 64-bit Windows systems will be
included with all 64-bit versions of the software.

Relocating real-time code into a DLL and executing it on a dedicated real-
time CPU has now become mandatory. Both aspects, however, allow for sig-
nificantly more stable real-time performance and more efficient multitasking.

With the new KiK64 concept combined with the obligatory utilization of the
dedicated mode, the software architecture of Kithara RealTime Suite is per-
fectly equipped for future progress of hardware and operating systems.

